Part Number Hot Search : 
13N20 LTD056 BUL57A 3022VM 75M00 52MHZ 75M00 00393
Product Description
Full Text Search
 

To Download WIM900T-R Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  wi.m900x/t drop-in embedded wireless module 868/915 mhz, 152.34kbit/sec, 32/84 channels 1 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
ty pical applications ? automated meter reading ? security sensors ? toys ? remote control description the wi.m900x /t module is a microcontroller-less version of our popular wi.232dts module. it offers the same excellent rf performance, yet allows the design engineer to control the radio at the physical level using any microcontroller. the module is footprint compatible with the wi.232dts module so upgrading to the wi.232dts is very easy? no pcb changes are required. the module supports two modes of operation: wide-band and narrow-band. in wide-band mode, the channel width is 600khz and in narrow-band mode the channel width is 200khz. the module is configured via a simple spi style serial interface. data is transmitted and received using a separate digital serial interface that includes pre-amble and start- of-packet detection. a typical circuit consists of a low-cost microcontroller, a power source, a wi.m900x /t module, and an antenna. the wim900x module is a complete transceiver while the wim900t module is transmit only. in addition, the modules can be ordered for operation in the 868 mhz band by substituting 868 for 900. for example: wim868x . features ? instant physical radio solution ? no external rf components required ? simple fcc certification as digital spread spectrum device ? supports frequency hopping ? based on the x e mics x e 1203f transceiver ? footprint compatible with our wi.232dts module ? built data clock recov e ry ? automatic packet start detection ? 2.4-3.6 volt operation ? 1.2 ? 152.34kbit/second data rate ? spi style digital serial interface ? factory set 48-bit unique id ? smallest form factor in the world ? under 0.8? square ? maximum output power ? +15dbm ? maximum rf sensitivity ? -112dbm ? rf sensitivity @ max data rate ? -103dbm typ. ? tx current = 54ma @ 15dbm typical ? rx current = 14ma typical ? nv personality memory stores factory calibration, lot code information, and unique id ? can be provided with or without a saw filter. ? 868, and 915 mhz versions are available ? 32 wideband and 84 narrow band channels are available in the 915 mhz version 2 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
document control document control created by steve montgomery 3/4/2005 engineering rev i ew marketing rev i ew approv ed ? engineering approv ed ? marketing revision history revision author date description 1 . 0 a s j m 3 / 4 / 2 0 0 5 document c r e a t e d 3 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
table of contents typical applications .......................................................................................................... 2 features ....................................................................................................................... ..... 2 description .................................................................................................................... .... 2 document control ............................................................................................................. 3 revision history ............................................................................................................... .3 table of contents .............................................................................................................. 4 pin-out diagram ................................................................................................................ 5 mechanical drawing .......................................................................................................... 5 pin descript i ons ............................................................................................................... .5 absolute maximu m ratin g s .............................................................................................. 6 detailed electrical specifications ...................................................................................... 6 ac specifications ? rx ................................................................................................. 6 n o t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 a c s p e c i f i c a t i o n s - t x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 n o t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 dc specifications .......................................................................................................... 7 n o t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 f u n c t i o n a l d e s c r i p t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 programming interface .................................................................................................... 10 non-volatile memory ....................................................................................................... 13 exa m ple circuit ................................................................................................................ 14 ordering information ....................................................................................................... 15 contact information ......................................................................................................... 15 4 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary pin-out diagram mechanical drawing pin descriptions pin number name description 1 clkout clock output from x e 1203 ? gnd on wi.23dts 2 en x e 1203 programming port enable 3 so x e 1203 programming port serial output 4 si x e 1203 programming port serial input 5 sck x e 1203 programming port clock 6 dclk x e 1203 data port clock 7 data x e 1203 data input/output ? programmable 8 datain x e 1203 data input 9 pat x e 1203 pattern output ? indicates start-of-packet 10 switch2 transmit enable ? controls rf switch 11 switch1 receive enable ? controls rf switch ? not used in transmit only version 1 2 g n d g r o u n d 13 ant 50 ohm antenna power 1 4 g n d g r o u n d 1 5 g n d g r o u n d 16 sda serial data pin for nv personality memory ? i2c bus 17 scl serial clock pin for nv personality memory ? i2c bus 1 8 g n d g r o u n d 19 vcc 2.4 ? 3.6 volt power supply 5 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary absolute maximum ratings parameter min max units vcc ? power supply -.3 5 vdc voltage on any pin -.3 vcc+.3, 5.0 max vdc input rf level 10 dbm storage temperature -50 150 c operating temperature -20 +85 c detailed electrical specifications ac specifications ? rx parameter min ty p max units notes receive frequency ? us 902 928 mhz receive frequency ? eur 868 870 mhz wide band channels ? us 32 ? 750khz channel spacing ? 235khz deviation wide band channels ? eur 2 ? 400khz channel spacing ? 155khz deviation ? channel usage depends on application narrow band channels ? us 84 ? 300khz channel spacing ? 75khz deviation narrow band channels ? eur 6 ? 150khz channel spacing ? 75khz deviation ? channel usage depends on application receiver sensitivity -102 dbm ? wideband us mode ? 152.34kbps data rate - 1 0 8 d b m ? wideband us mode ? 2.4kbps data rate - 1 1 0 d b m ? narrow band us mode ? 2.4kbps data rate receiver noise bandwidth 200 khz wideband mode 6 0 0 k h z narrow band mode adjacent channel rejection 55 db ? chan+750khz for w i deband ? chan+300khz for narrow band lo leakage -70 dbm 6 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary ac specifications - tx parameter min ty p max units notes transmit frequency ? us 902 928 mhz transmit frequency ? eur 868 870 mhz wide band channels ? us 32 ? ? ? ? ? ? ? ? ? ? ? ? dc specifications parameter min ty p max units notes rx current 14 ma tx current 54 ma +15dbm pow er setting tx current 34 ma +10dbm pow er setting tx current 27 ma +5dbm pow er setting tx current 22 ma 0dbm pow er setting sleep current .2 1 ua 7 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary functional description sa w fi l t e r ln a i am p q am p li m li m dem o d u l a t o r i am p q am p i am p rssi i am p o u t 1 di g i t a l da t a in t e r f a c e dat a cl k pa tte r n dc l k di n dat a pa t t e r n pa vc o si gma delta frac t i on al n sy nthesi zer lo o p fi l t e r xt al cl ko ut buf 90 d e g r ees co ntrol in t e r f a c e si sw i t c h 2 en sck so an t sw i t ch1 figure 1: block diagram of wi.m900x/t module the wi.m900x /t module is based on the x e mics x e 1203e(f) transceiver rfic. it encapsulates the remaining circuitry required to complete an rf module. any 50 ohm antenna can be used with the wi.m900x /t. the wi.m900x module is populated with all of the transceiver components shown in figure 1. the wi.m900t is only populated with the transmitter components; it does not have the saw filter nor the rf switch. on the wi.m900x the antenna pin on the module goes either to the saw filter or to the rf switch directly. the module can be ordered with or without a saw filter. if the saw filter is populated, it is critical that the antenna be ac coupled if it has a dc path to ground (which is true for most pcb antennas). on the wi.m900t the antenna pin connects directly to the output of the power amplifier. if populated, the rf switch connects the antenna port to either the transmit or receive rf chain. it is controlled by switch1 and switch2. switch2 is also connected to the switch input of the x e 1203. the following table shows how switch1 and switch2 affect the operation of the module. 8 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary switch1 switch2 rf mode xe1203 reg set low low receive ? switch off swparam1 h i g h l o w r e c e i v e s w p a r a m 1 l o w h i g h t r a n s m i t s w p a r a m 2 high high transmit ? switch off swparam2 internally, the x e 1203 has two identical sets of programming registers (swparam) that control the operation of the chip. genera lly, one set is programmed for receive mode and the other set is programmed for transmit mode. for the wi.m900x /t module, set 1 is for receive mode and set 2 is for transmit mode. for the wi.m900t module, the register sets can be used to quickly switch between two frequencies. register set 1 is selected when switch2 is low, and register set 2 is selected when switch2 is high. in addition to the swparam registers, there are three other register sets that set the operation of the module. the configswitch register controls the operation of the switch pin on the x e 1203. since we are using the switch pin as an input, the value of configswitch does not matter. the rtparam registers controls the operation of the radio itself. the fsparam registers controls the operation of the frequency synthesizer. the adparam register determines the parameters of operation for the digital data interface. all of these registers are used in both receive and transmit mode. they c an be programmed to meet the customer?s needs. the only requirement is that bit 3 (rtparam_switch_ext) of rtparam must be set to 1. the receive chain is a traditional zero-if architecture. the filter bandwidth is programmable and can be set to 200khz or 600khz. rssi is derived from the i-channel. it is digitized internally and can be read from the dataout register. frequency error indication (fei) is derived from both the i and q channels. its value can be read from the dataout register. fei can be used to correct for crystal frequency errors caused by temperature variations. the demodulator re-creates the data stream. it demodulates the fsk modulated base- band carrier, extracts the bit stream timing, and samples the raw bit stream to accurately reproduce the original data. in receive mode, the data interface is synchronous, operating as an spi master. the module determines the data timing; the dclk pin is the clock and the data pin is the data output. in transmit mode, the data interface is asynchronous, operating as an spi slave. the data timing is determined by the host microcontroller. the dclk pin is not used in 9 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary transmit mode. the data input could be either data or datain, depending on how the module is programmed. figure 2 shows a typical connection between the module and a host microcontroller spi port. in this configuration, the data pin is programmed to be a data output in receive mode and a data output in receive mode. in receive mode, the microcontroller spi port is configured as an spi slave. the module generates data timing. in transmit mode, the microcontroller spi port is configured as a spi master. timing is generated by the microcontroller. w i m 900 x m o dul e mi crocontr o l l er dc l k dat a 6 7 sc l k mo s i figure 2 the transmit chain is essentially a vco locked to a crystal reference frequency by a fractional n synthesizer. the synthesizer allows the vco frequency to be set in 500 hz steps. it also supports direct digital fsk modulation of the transmit carrier. frequency deviation can be set from 0 to 255khz in 1khz steps. the output of the vco is amplified by the power amp, which can be set to one of four output power levels. for detailed information about programming the wi.m900x /t module, please consult the current x e 1203e(f) data sheet which can be found at www.xemics.com . programming interface the serial programming interface is compatible with any hardware or software implementation of a spi serial port. the following code example shows functions for reading and writing module registers using a software spi implementation. the x e _sclk, x e _si, x e _so, x e _en definitions are hardware specific and correspond to the microcontroller io pins that are connected to the x e 1203 spi pins. 10 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary //---------------------------------------------------------------------------- // void halrfwritereg(reg, val) // // description: // function used to w r ite registers in the xe1203 // // arguments: // by te reg // register number to w r ite // by te val // value to w r ite to register // // return value: // void //---------------------------------------------------------------------------- void halrfwritereg(by te reg, by te val) { by te data i; xe_sclk=0; // alw a y s start in a low condition xe_si=1; xe_en=0; // enable the serial port // start condition xe_sclk=1; xe_si=1; xe_sclk=0; xe_si=1; xe_sclk=1; xe_si=0; // xe_sclk=0; xe_si=0; // for delay only // w r ite bit xe_sclk=1; xe_si=0; xe_sclk=0; xe_si=0; // for delay only for(i=0;i<=4;i++) { xe_sclk=1; xe_si=(reg&0x10); xe_sclk=0; reg<<=1; } for(i=0;i<=7;i++) { xe_sclk=1; xe_si=(val&0x 80); xe_sclk=0; val=val<<1; } xe_sclk=1; xe_si=1; xe_sclk=0; xe_si=1; xe_sclk=1; xe_si=1; xe_sclk=0; xe_en=1; xe_sclk=1; 11 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary xe_si=1; xe_sclk=0; } //---------------------------------------------------------------------------- // void halrfreadreg(reg, val) // // description: // function used to read registers in the xe1203 // // arguments: // by te reg // register number to w r ite // by te val // value to w r ite to register // // return value: // void //---------------------------------------------------------------------------- by te halrfreadreg(by te reg) { by te data i; by te data regdat; regdat=0; xe_sclk=0; // alw a y s start in a low condition xe_si=1; xe_en=0; // enable the serial port // start condition xe_sclk=1; xe_si=1; xe_sclk=0; xe_si=1; xe_sclk=1; xe_si=0; // xe_sclk=0; xe_si=0; // for delay only // w r ite bit xe_sclk=1; xe_si=1; xe_sclk=0; xe_si=1; // for delay only for(i=0;i<=4;i++) { xe_sclk=1; xe_si=(reg&0x10); xe_sclk=0; reg<<=1; } for(i=0;i<=7;i++) { regdat=regdat<<1; xe_sclk=1; regdat|= (by t e)xe_so; xe_sclk=0; } xe_sclk=1; xe_si=1; xe_sclk=0; xe_si=1; 12 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary xe_sclk=1; xe_si=1; xe_sclk=0; xe_en=1; xe_sclk=1; xe_si=1; xe_sclk=0; return regdat; } non-volatile memory the on-board nonvolatile memory stores a 48-bit unique identification number and a signed 8-bit calibration constant. the calibration constant is used to correct the channel programming for offset error caused by the reference crystal. the following code snippet shows how to use this constant: void halrfsetchan(byte chan) { int offs et, txword, rxword; txword=chandts[chan]; rxword=chandts[chan]; // read offset. if the xtcal value is below min or above max, it will // default to 0 (no offset). // ------------------------------------------------------------------- offset = (int)i2cread(nv_xtcal); if ((offset < xtcal_lower_limit) || (offset > xtcal_upper_limit)) offset = 0; // set the transmit parameters // --------------------------- txword+ = o ffs et; halrfwritereg(rfrswparamb_2,(by t e)tx word); halrfwritereg(rfrswparam b_1,(by t e)(tx w ord>>8)); // set the receive parameters // -------------------------- rxword+ = o ffs et; halrfwritereg(rfrswparama_2,(by t e)rx word); halrfwritereg(rfrswparam a_1,(by t e)(rx word>>8)); } the channel programming word is determined by chandts[channel]. the calibration constant is then read in using the i2c bus; it is stored in offset. the offset is then added to the channel programming word and sent to the wi.m900x/t module using the programming interface. 13 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary example circuit figure 3: example schematic 14 ? 2004, 2005 all rights reserved www.radiotr onix.com revision a
preliminary preliminary 15 ? 2004, 2005 all rights reserved www.radiotronix.com revision a ordering information product order code description wi.m900x us transceiver version wi.m900x-ns us transceiver version ? no saw wi.m868x european transceiver version wi.m868x-ns european transceiver version ? no saw wi.m900t us transmit only version wi.m868t european transmit only version contact information corporate headquarters: 207 industrial blvd moore, oklahoma 73160 405-794-7730 website: www.radiotronix.com support: support@radiotronix.com


▲Up To Search▲   

 
Price & Availability of WIM900T-R

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X